Access the latest quantum technology

Quantum technology in Bristol and bath - find out more about how you can access the commercialisation of quantum technology for sensing and security

Thursday, May 26, 2011

TSMC to tape out 89 28nm designs

Targets 20nm designs using ARM Coretex processor cores

By Nick Flaherty

TSMC's customers are taping out 89 new designs on its 28nm process using the Open Innovation Platform (OIP) design infrastructure. The company is also introducing OIP enhancements, including the delivery of Reference Flow 12.0 and Analogue/Mixed Signal (AMS) Reference Flow 2.0.
"TSMC customers can immediately take advantage of our 28nm advanced technology and manufacturing capacity while preparing for 20nm in the near future," said Cliff Hou, TSMC Senior Director for the Design and Technology Platform. "We have enabled customers to achieve their product design goals by closely collaborating with our EDA and IP partners to deliver a solid 28nm design ecosystem. In addition, the introduction of Reference Flow 12.0 and AMS Reference Flow 2.0 address critical design issues for the next generation of 28nm and 20nm applications."
TSMC's 28nm design ecosystem is ready today with foundation collateral such as DRC, LVS and PDKs; foundation IP, including standard cell libraries, standard I/O, eFuse and memory compilers; and standard interface IP such as USB, PCI and DDR/LPDDR. Customers can download these materials at TSMC Online. Collaboration with the EDA community for 28nm has been equally thorough in order to achieve tool consistency for improved design results. One example is a unified DFM engine for 28nm now in use by Cadence, Mentor and Synopsys.
Reference Flow 12.0 features various enhancements in: two-and-a-half dimensional and three dimensional integrated circuits (2.5-D/3-D ICs) using silicon interposer and through silicon via (TSV) technologies; 28nm model-based simulation DFM speed-up; and advanced Electronic System Level (ESL) design initiative enabling TSMC's process technology PPA (power, performance and area) to be integrated into system level design. In addition, Reference Flow 12.0 will disclose TSMC's 20nm Transparent Double Patterning design solution for the first time as part of the on-going build up of 20nm design capability within OIP.
AMS Reference Flow 2.0 offers an advanced multi-partner AMS design flow addressing the growing complexity of 28nm process effects and design challenges for superior DFM and RDR compliance and reliability.

Reference Flow 12.0 and Transparent Double Patterning for 20nm
20nm is the first process node where metal pitch is beyond the lithographic capabilities of existing exposure systems. Double patterning is the key enabling lithographic technology to overcome the litho resolution limitations without resorting to as yet production unproven technologies as EUV. TSMC's Transparent Double Patterning solution enables system and chip designers to access 20nm technology, implemented with double patterning, without any modifications to their current design methodologies or flows. This technology is being delivered to EDA partners and certified for delivery in their commercial products.

2.5D Silicon Interposer
Typically a 2.5D design includes multiple dies to be integrated with a silicon interposer, which is implemented in different technology. Reference Flow 12.0 features new design capabilities in floorplanning, P&R, and IR-drop and thermal analysis to accommodate multiple nodes simultaneously, as well as a new design for test methodology for 2.5D design.

28nm Power, Performance and DFM Design Enablement
Timing degradation from wire and via resistance becomes more significant in finer geometry technologies: Reference Flow 12.0 introduces an enhanced routing methodology to minimize via counts, change layers for routing, or widen wires to mitigate the impact of wire and via resistance.
Leakage current increases as threshold voltage and gate oxide thickness decrease in 28nm. Multi-Mode Multi-Corner (MMMC) leakage optimization accommodates different Vt options and gate-biased libraries enabling designers to more effectively reduce leakage.
Finally, in order to minimize the design cycle time of hotspot checking and fixing in 28nm, a new "hotspot filtering engine" is added to the DFM Data Kit (DDK) to speed up model-based DFM analysis.

AMS Reference Flow 2.0
AMS 2.0 helps designers to ensure the compliance of DFM and Restricted Design Rules (RDR) for custom design in 28nm. It demonstrates correct design configurations and options setting to use TSMC PDKs and DFM utilities. In addition, TSMC applies accumulated reliability lessons learned, and collaborates with ecosystem partners to introduce innovative approaches to filter out known potential reliability defects. TSMC and 21 OIP ecosystem partners will present and showcase the features and benefits of Reference Flow 12.0 and AMS Reference Flow 2.0.

RF Reference Design Kit 3.0
For RF designers, TSMC will introduce a new RF Reference Design Kit (RF RDK 3.0) which includes an advanced, silicon correlated, 60GHz Millimeter Wave design kit, and an innovative way for customers to design with their own choice of inductors through EM (electromagnetic) simulation.
Enhanced by Zemanta

No comments: