All the latest quantum computer articles

See the latest stories on quantum computing from eeNews Europe

Tuesday, November 05, 2019

3D printing embeds silver nanowires

By Nick Flaherty www.flaherty.co.uk

Researchers at Rutgers University in the US have embedded high performance electrical circuits inside 3D-printed plastics, which could lead to smaller and versatile unmanned aircraft and better-performing small satellites, biomedical implants and smart structures.

They used pulses of high-energy light to fuse silver nanowires, resulting in circuits that conduct ten times more electricity than the state of the art, according to a study in the journal Additive Manufacturing. This higher conductivity reduces energy use, extend the life of devices and increase their performance.

“Our innovation shows considerable promise for developing an integrated unit – using 3D printing and intense pulses of light to fuse silver nanoparticles – for electronics,” said Rajiv Malhotra, an assistant professor in the Department of Mechanical and Aerospace Engineering in the School of Engineering at Rutgers University–New Brunswick.

Embedding electrical interconnections inside 3D-printed structures made of polymers, or plastics, can create new paradigms for devices that are smaller and more energy-efficient. Such devices could include CubeSats, drones, transmitters, light and motion sensors and Global Positioning Systems. Such interconnections are also often used in antennas, pressure sensors, electrical coils and electrical grids for electromagnetic shielding.

The team used intense pulsed light sintering with high-energy light from a xenon lamp to fuse long thin rods of silver as nanowires in the 3D printed objects. The next steps include making fully 3D internal circuits, enhancing their conductivity and creating flexible internal circuits inside flexible 3D structures, said Malhotra.

No comments: