All the latest quantum computer articles

See the latest stories on quantum computing from eeNews Europe

Friday, January 04, 2019

CEVA launches hybrid DSP/controller architecture for the IoT

By Nick Flaherty www.flaherty.co.uk

CEVA has developed an extendable, combined digital signal processor and microcontroller for chips in the Internet of Things (IoT).

The CEVA-BX combines the inherent low power requirements of DSP kernels with the high-level programming and compact code size requirements of a large control code base. Using an 11-stage pipeline and 5-way VLIW micro-architecture, it offers parallel processing with dual scalar compute engines, load/store and program control that reaches a speed of 2 GHz at TSMC 7nm process node using common standard cells and memory compilers. 

The CEVA-BX Instruction Set Architecture (ISA) incorporates support for Single Instruction Multiple Data (SIMD) widely used in neural network inference, noise reduction and echo cancellation, as well as half, single and double precision floating point units for high accuracy sensor fusion and positioning algorithms.

“Consumer, automotive, industrial and healthcare devices are increasingly integrating multiple sensors, such as cameras, microphones, environmental and motion detectors, which produce data that must be fused, interpreted, and processed on-device before being sent via a wireless link to the cloud," said Mike Demler, Senior Analyst at The Linley Group. "Processing these heavy-duty signal-processing workloads in edge devices requires an efficient combination of control and DSP capabilities. The CEVA-BX eliminates the need for separate CPUs and DSP coprocessors, employing a hybrid architecture that delivers excellent all-round performance for smart devices.”

CEVA-BX employs key architecture principles of advanced micro-processor architectures such as a large orthogonal general purpose register set for maximum C compiler efficiency, innovative Branch Target Buffer (BTB) for minimising branch overhead, hardware loop buffer for reduced power consumption of code loops, fully cached memory subsystem, and native support for all standard C types. 

The CoreMark/MHz score of 4.5 reflects the control capabilities of the architecture. CEVA-BX customers are able to add proprietary ISA into the architecture using the CEVA-Xtend, to accelerate proprietary algorithms and take advantage of CEVA’s automatic Queue and Buffer management mechanisms to integrate co-processors and create a cluster of CEVA-BX cores.

“The CEVA-BX architecture ... offers a high performance hybrid architecture that is a single compute island for all DSP and control workloads that are commonplace in intelligent connected devices. Using a high level programming model and parallel processing it addresses the main performance shortfalls and programming difficulties of older special purpose DSPs and controllers,” said Moshe Sheier, vice president of marketing at CEVA.

The CEVA-BX is initially offered in two configurations - the CEVA-BX1 with single 32X32-bit MAC and quad 16X16-bit MACs and the CEVA-BX2 with quad 32X32-bit MACs and octal 16X16-bit MACs, that are also capable of supporting 16x8-bit and 8x8-bit MAC operations. It addresses intensive workloads such as 5G PHY control, multi-microphone beamforming and neural networks for speech recognition, with up to 16 GMACs per second. 

The CEVA-BX1 serves low to mid-range DSP workloads, such as cellular IoT, protocol stacks, and always-on sensor fusion, with up to 8 GMACs per second. Security is addressed using dedicated trusted execution modes to comply with the stringent safety standards. 

The CEVA-BX family is accompanied by a comprehensive software development tool chain, including an advanced LLVM compiler, Eclipse based debugger, DSP and neural network compute libraries, neural network frameworks support such as Android NN API, ARM NN, and Tensorflow Lite, and choice of Real Time Operating Systems (RTOS). 

The CEVA-BX cores are available now to lead customers and by end of Q1/2019 for general licensing.

No comments: